

LETTER TO THE EDITOR / EDİTÖRE MEKTUP

FLORA 2024;29(1):161-163 • doi: 10.5578/flora.202401835

Ceftazidime-Avibactam Susceptibility Patterns of Carbapenem-Resistant *Klebsiella pneumoniae* and *Pseudomonas aeruginosa* Clinical Strains in a Tertiary-Care Educational Hospital in Türkiye

Türkiye'deki Üçüncü Basamak Eğitim Hastanesinde Karbapenem Dirençli *Klebsiella pneumoniae* ve *Pseudomonas aeruginosa* Klinik Suşlarının Seftazidim-Avibaktam Duyarlılık Paternleri

Ayşe NOYAN¹(iD), Oğuz Reşat SİPAHi^{2,3}(iD), Feriha ÇİLLİ¹(iD), Şöhret AYDEMİR¹(iD)

¹ Department of Medical Microbiology, Ege University Faculty of Medicine, İzmir, Türkiye

² Department of Infectious Diseases and Clinical Microbiology, Ege University Faculty of Medicine, İzmir, Türkiye

³ Department of Infectious Diseases, Bahrain Oncology Center, King Hamad University Hospital, Muharraq, Bahrain

Cite this article as: Noyan A, Sipahi OR, Çilli F, Aydemir Ş. Ceftazidime-avibactam susceptibility patterns of carbapenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical strains in a tertiary-care educational hospital in Türkiye. FLORA 2024;29(1):161-163.

Dear Editor,

Healthcare-associated infections caused by carbapenem-resistant gram-negative bacilli (CRGNB) are becoming increasingly significant. A substantial part of CRGNB are resistant to multiple drugs and are increasingly resistant to most available antibiotics^[1]. The increasing prevalence of CRGNB also constitutes a serious threat to global public health due to the limited treatment options available and the historically slow pace of development in the new gramnegative bacteria-oriented antimicrobial agents^[2].

Ceftazidime-avibactam (CAZ-AVI) is the firstline treatment in carbapenem-resistant *Klebsiella pneumoniae* and the second-line treatment after ceftolozane/tazobactam which is not available in Türkiye for *Pseudomonas aeruginosa* in IDSA guidelines^[3]. Herein, we aimed to investigate the in vitro efficacy of CAZ-AVI, against clinical strains of carbapenem-resistant *K. pneumoniae* and *P. aeruginosa*.

A total of 170 strains isolated from different clinical specimens in the bacteriology laboratory between February 1 and August 31, 2021, were evaluated. In the case of duplicate isolates, the first strain isolated from each patient was included in the study. Species-level identification of bacteria was performed by MALDI-TOF MS (bioMérieux, France). The susceptibility testing of the strains was performed using the Kirby-Bauer disk diffusion method and VITEK 2 (bioMérieux, France), an automated microdilution method in accordance with EUCAST recommendations^[4]. CAZ-AVI susceptibility was determined by the disc diffusion $method^{[5]}$. Enterobacterales isolates (susceptible, ≥ 13 mm; resistant, <13 mm) and P. aeruginosa isolates (susceptible, \geq 17 mm; resistant, <17 mm) were interpreted breakpoints^[4]. EUCAST In addition with to CAZ-AVI, resistance rates of amikacin, gentamicin, imipenem, ertapenem, meropenem, and ciprofloxacin were also analyzed.

Received/Geliş Tarihi: 08/04/2023 - Accepted/Kabul Ediliş Tarihi: 23/08/2023

Of the 170 strains examined, 140 (82.3%) were identified as K. pneumoniae and 30 (17.6%) as P. aeruginosa. Approximately 33.8% were isolated from respiratory samples, 30.3% from urinary samples, 15.6% from the blood culture, and 19% from soft tissue infections. While 52.8% of the examined isolates were isolated from inpatients, 27% were isolated from emergency room patients. Additionally, 24.4% of inpatients were in the intensive care units. In K. pneumoniae strains, resistance to imipenem, meropenem, ertapenem, ciprofloxacin, amikacin, gentamicin, and CAZ-AVI were 94.3%, 95%, 100%, 98.6%, 39.28%, 47.14%, and 26.42%, respectively. Imipenem, meropenem, ciprofloxacin, amikacin, and CAZ-AVI resistance rates in P. aeruginosa strains were 93.3%, 80%, 90%, 60%, and 60%, respectively.

CAZ-AVI was the most effective antibiotic against *K. pneumoniae*. CAZ-AVI and amikacin were the most effective antibiotics in *P. aeruginosa*. We also analyzed the sensitivity to CAZ-AVI in strains resistant to gentamicin and amikacin, as well as in strains sensitive to gentamicin and amikacin. We found sensitivities of 60.5% (46/76) and 78.4% (40/51), respectively.

In two studies from Sakarya, CAZ-AVİ resistance was reported to be 21.8% in carbapenem-resistant *P. aeruginosa* and 27% in carbapenem-resistant *K. pneumoniae*^[6,7]. In another study from Ankara and Adana with 102 meropenem-resistant *P. aeruginosa* strains, the CAZ-AVİ resistance rate was determined as $17\%^{[8]}$. While our CAZ-AVİ resistance rate in *K. pneumoniae* (26.42%) was consistent with the findings of Terzi et al., the CAZ-AVİ resistance rate in *P. aeruginosa* (60%) was higher than that reported by Aydemir et al. and Mirza et al^[6-8]. We may speculate that this discrepancy may be due to the possible molecular epidemiology difference in our setting. However, we could not perform molecular analysis.

As a limitation of our study, we did not analyze the molecular epidemiology and clinical outcomes of the patients. However, our data suggest that, while not applicable to all strains, approximately 40% of *P. aeruginosa* strains and 75% of the *K. pneumoniae* strains indicate a potential for patients to be treated with CAZ-AVİ, as recommended by the IDSA guidelines^[3].

In conclusion, CAZ-AVİ continues to exhibit a high susceptibility rate, and accurate susceptibility testing is crucial for optimal patient management. Furthermore, we recommend heightened efforts in implementing effective infection control measures against CRGNB.

CONFLICT of INTEREST

The authors have no conflicts of interest to declare that are relevant to the content of this article.

REFERENCES

- 1. Centers for Disease Control and Prevention (CDC). Gram-negative bacteria infections in healthcare settings. Available from: https://www.cdc.gov/hai/organisms/gram-negative-bacteria.html (Accessed date: 09.08.2021).
- Cerceo E, Deitelzweig S, Sherman B, Amin A. Multidrug-resistant gram-negative bacterial infections in the hospital setting: Overview, implications for clinical practice, and emerging treatment options. MicrobDrug-Resist 2016;22:412-31. https://doi.org/10.1089/ mdr.2015.0220
- Infectious Disease Society of America (IDSA). IDSA 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Available from: https://www. idsociety.org/practice-guideline/amr-guidance#null (Accessed date: 28.07.2023).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoints tables for interpretation of MICs and zone diameters; version 13.1. Available from: https://www. eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.1_Breakpoint_Tables.pdf (Accessed date: 29.06.2023).
- Wang Q, Zhang F, Wang Z, Chen H, Wang X, Zhang Y, et al. Evaluation of the Etest and disk diffusion method for detection of the activity of ceftazidime-avibactam against Enterobacterales and Pseudomonas aeruginosa in China. BMC Microbiol 2020;20:187. https://doi.org/10.1186/ s12866-020-01870-z
- Terzi HA, Aydemir Ö, Demiray T, Köroğlu M, Altındış M. Evaluation of in vitro activity of ceftolozane-tazobactam and ceftazidime-avibactam against carbapenemase-producing multi-drug resistant Klebsiella pneumoniae Isolates. Mediterr J Infect Microb Antimicrob 2020;9:11. https://doi.org/10.4274/mjima.galenos.2020.2020.11
- Aydemir Ö, Terzi HA, Köroğlu M, Altındiş M. In vitro activity of ceftolozane/tazobactam and ceftazidime/avibactam against carbapenemase-producing Pseudomonas aeruginosa. Mediterr J Infect Microb Antimicrob 2019;8:5. https://doi.org/10.4274/mjima.galenos.2019.2019.5

 Mirza HC, Hortaç E, Koçak AA, Demirkaya MH, Yayla B, Güçlü AÜ, et al. In vitro activity of ceftolozane-tazobactam and ceftazidime-avibactam against clinical isolates of meropenem-non-susceptible Pseudomonas aeruginosa: A two-centre study. J Glob Antimicrob Resist 2020;20:334-8. https://doi.org/10.1016/j.jgar.2019.09.016

Address for Correspondence/Yazışma Adresi

Dr. Ayse NOYAN Department of Medical Microbiology, Ege University Faculty of Medicine, İzmir, Türkiye E-posta: noyanayse.9445@gmail.com